ZJU-Leaper: A Benchmark Dataset for Fabric Defect Detection

Datasets Comparison

Fabric Patterns

Dataset Statistics

Fabric Groups

Task Settings

Evaluation Metrics

  1. Pixel-level
    Dice=F1pix=TPpixTPpix+12(FPpix+FNpix)\boldsymbol{Dice = F_1^{pix} = \frac{TP^{pix}}{TP^{pix} + \frac{1}{2}(FP^{pix} + FN^{pix})}}
  1. Region-level
    Prereg=#correct proposed regions#total proposed regionsRecreg=#detected groundtruth regions#total groundtruth regionsF1reg=2PreregRecregPrereg+RecregPre^{reg} = \frac{\#correct\ proposed\ regions}{\#total\ proposed\ regions} \\ Rec^{reg} = \frac{\#detected\ ground \text{\textendash} truth\ regions}{\#total\ ground \text{\textendash} truth\ regions} \\ \boldsymbol{F_{1}^{reg} = 2 \cdot \frac{Pre^{reg} \cdot Rec^{reg}}{Pre^{reg} + Rec^{reg}}}
  1. Sample-level
    F1sam=TPsamTPsam+12(FPsam+FNsam)\boldsymbol{F_1^{sam} = \frac{TP^{sam}}{TP^{sam} + \frac{1}{2}(FP^{sam} + FN^{sam})}}

Other Resources

Related Paper

The paper titled "ZJU-Leaper: A Benchmark Dataset for Fabric Defect Detection and a Comparative Study" was accepted by IEEE Transactions on Artificial Intelligence.

Citation Tip

@article{zju-leaper,
  author={Zhang, Chenkai and Feng, Shaozhe and Wang, Xulongqi and Wang, Yueming},
  journal={IEEE Transactions on Artificial Intelligence}, 
  title={ZJU-Leaper: A Benchmark Dataset for Fabric Defect Detection and a Comparative Study}, 
  year={2020},
  volume={1},
  number={3},
  pages={219-232},
  doi={10.1109/TAI.2021.3057027}
  issn={2691-4581},
  publisher={IEEE},
}

Performance Benchmark

Baseline models

ModelSettingF1_pixF1_regF1_samNote
SCSetting10.1690.1070.468Sparse coding
CAESetting10.1870.1030.432Convolutional auto-encoder
OCSVMSetting10.1180.0710.469One-class SVM
U-NetSetting20.5580.2990.711U-Net model
U-Net(TL)Setting20.6030.4240.739U-Net with transfer learning
U-Net(DA)Setting20.5880.3350.779U-Net with data augmentation
U-Net(label)Setting30.2240.1130.587Training with label annotations
U-Net(bbox)Setting40.6830.5380.84Training with bounding-box annotations
U-NetSetting50.9060.7240.856Training with all mask annotations, costly